20 research outputs found

    A Novel Multi-scale Attention Feature Extraction Block for Aerial Remote Sensing Image Classification

    Full text link
    Classification of very high-resolution (VHR) aerial remote sensing (RS) images is a well-established research area in the remote sensing community as it provides valuable spatial information for decision-making. Existing works on VHR aerial RS image classification produce an excellent classification performance; nevertheless, they have a limited capability to well-represent VHR RS images having complex and small objects, thereby leading to performance instability. As such, we propose a novel plug-and-play multi-scale attention feature extraction block (MSAFEB) based on multi-scale convolution at two levels with skip connection, producing discriminative/salient information at a deeper/finer level. The experimental study on two benchmark VHR aerial RS image datasets (AID and NWPU) demonstrates that our proposal achieves a stable/consistent performance (minimum standard deviation of 0.0020.002) and competent overall classification performance (AID: 95.85\% and NWPU: 94.09\%).Comment: The paper is under review in IEEE Geoscience and Remote Sensing Letters Journal (IEEE-GRSL). This version may be deleted and/or updated based on the journal's polic

    Enhanced Multi-level Features for Very High Resolution Remote Sensing Scene Classification

    Full text link
    Very high-resolution (VHR) remote sensing (RS) scene classification is a challenging task due to the higher inter-class similarity and intra-class variability problems. Recently, the existing deep learning (DL)-based methods have shown great promise in VHR RS scene classification. However, they still provide an unstable classification performance. To address such a problem, we, in this letter, propose a novel DL-based approach. For this, we devise an enhanced VHR attention module (EAM), followed by the atrous spatial pyramid pooling (ASPP) and global average pooling (GAP). This procedure imparts the enhanced features from the corresponding level. Then, the multi-level feature fusion is performed. Experimental results on two widely-used VHR RS datasets show that the proposed approach yields a competitive and stable/robust classification performance with the least standard deviation of 0.001. Further, the highest overall accuracies on the AID and the NWPU datasets are 95.39% and 93.04%, respectively.Comment: This paper is under consideration in the International Journal of Intelligent Systems (Wiley) journal. Based on the journal's policy and restrictions, this version may be updated or delete

    Comparison of simultaneous auscultation and ultrasound for clinical assessment of bowel peristalsis in neonates

    Get PDF
    IntroductionAssessment of bowel health in ill preterm infants is essential to prevent and diagnose early potentially life-threatening intestinal conditions such as necrotizing enterocolitis. Auscultation of bowel sounds helps assess peristalsis and is an essential component of this assessment.AimWe aim to compare conventional bowel sound auscultation using acoustic recordings from an electronic stethoscope to real-time bowel motility visualized on point-of-care bowel ultrasound (US) in neonates with no known bowel disease.MethodsThis is a prospective observational cohort study in neonates on full enteral feeds with no known bowel disease. A 3M™ Littmann® Model 3200 electronic stethoscope was used to obtain a continuous 60-s recording of bowel sounds at a set region over the abdomen, with a concurrent recording of US using a 12l high-frequency Linear probe. The bowel sounds heard by the first investigator using the stethoscope were contemporaneously transferred for a computerized assessment of their electronic waveforms. The second investigator, blinded to the auscultation findings, obtained bowel US images using a 12l Linear US probe. All recordings were analyzed for bowel peristalsis (duration in seconds) by each of the two methods.ResultsWe recruited 30 neonates (gestational age range 27–43 weeks) on full enteral feeds with no known bowel disease. The detection of bowel peristalsis (duration in seconds) by both methods (acoustic and US) was reported as a percentage of the total recording time for each participant. Comparing the time segments of bowel sound detection by digital stethoscope recording to that of the visual detection of bowel movements in US revealed a median time of peristalsis with US of 58%, compared to 88.3% with acoustic assessment (p < 0.002). The median regression difference was 26.7% [95% confidence interval (CI) 5%–48%], demonstrating no correlation between the two methods.ConclusionOur study demonstrates disconcordance between the detection of bowel sounds by auscultation and the detection of bowel motility in real time using US in neonates on full enteral feeds and with no known bowel disease. Better innovative methods using artificial intelligence to characterize bowel sounds, integrating acoustic mapping with sonographic detection of bowel peristalsis, will allow us to develop continuous neonatal bowel sound monitoring devices

    Fusion of whole and part features for the classification of histopathological image of breast tissue

    Full text link
    PURPOSE: Nowadays Computer-Aided Diagnosis (CAD) models, particularly those based on deep learning, have been widely used to analyze histopathological images in breast cancer diagnosis. However, due to the limited availability of such images, it is always tedious to train deep learning models that require a huge amount of training data. In this paper, we propose a new deep learning-based CAD framework that can work with less amount of training data. METHODS: We use pre-trained models to extract image features that can then be used with any classifier. Our proposed features are extracted by the fusion of two different types of features (foreground and background) at two levels (whole-level and part-level). Foreground and background feature to capture information about different structures and their layout in microscopic images of breast tissues. Similarly, part-level and whole-level features capture are useful in detecting interesting regions scattered in high-resolution histopathological images at local and whole image levels. At each level, we use VGG16 models pre-trained on ImageNet and Places datasets to extract foreground and background features, respectively. All features are extracted from mid-level pooling layers of such models. RESULTS: We show that proposed fused features with a Support Vector Classifier (SVM) produce better classification accuracy than recent methods on BACH dataset and our approach is orders of magnitude faster than the best performing recent method (EMS-Net). CONCLUSION: We believe that our method would be another alternative in the diagnosis of breast cancer because of performance and prediction time

    Attention-based VGG-16 model for COVID-19 chest X-ray image classification

    Full text link

    New bag of deep visual words based features to classify chest x-ray images for COVID-19 diagnosis

    Full text link
    Because the infection by Severe Acute Respiratory Syndrome Coronavirus 2 (COVID-19) causes the pneumonia-like effect in the lungs, the examination of chest x-rays can help to diagnose the diseases. For automatic analysis of images, they are represented in machines by a set of semantic features. Deep Learning (DL) models are widely used to extract features from images. General deep features may not be appropriate to represent chest x-rays as they have a few semantic regions. Though the Bag of Visual Words (BoVW) based features are shown to be more appropriate for x-ray type of images, existing BoVW features may not capture enough information to differentiate COVID-19 infection from other pneumonia-related infections. In this paper, we propose a new BoVW method over deep features, called Bag of Deep Visual Words (BoDVW), by removing the feature map normalization step and adding deep features normalization step on the raw feature maps. This helps to preserve the semantics of each feature map that may have important clues to differentiate COVID-19 from pneumonia. We evaluate the effectiveness of our proposed BoDVW features in chest x-rays classification using Support Vector Machine (SVM) to diagnose COVID-19. Our results on a publicly available COVID-19 x-ray dataset reveal that our features produce stable and prominent classification accuracy, particularly differentiating COVID-19 infection from other pneumonia, in shorter computation time compared to the state-of-the-art methods. Thus, our method could be a very useful tool for quick diagnosis of COVID-19 patients on a large scale.Comment: Submitted to Health Information Science and Systems (Springer) for revie

    Multi-channel CNN to classify nepali covid-19 related tweets using hybrid features

    Full text link
    Because of the current COVID-19 pandemic with its increasing fears among people, it has triggered several health complications such as depression and anxiety. Such complications have not only affected the developed countries but also developing countries such as Nepal. These complications can be understood from peoples' tweets/comments posted online after their proper analysis and sentiment classification. Nevertheless, owing to the limited number of tokens/words in each tweet, it is always crucial to capture multiple information associated with them for their better understanding. In this study, we, first, represent each tweet by combining both syntactic and semantic information, called hybrid features. The syntactic information is generated from the bag of words method, whereas the semantic information is generated from the combination of the fastText-based (ft) and domain-specific (ds) methods. Second, we design a novel multi-channel convolutional neural network (MCNN), which ensembles the multiple CNNs, to capture multi-scale information for better classification. Last, we evaluate the efficacy of both the proposed feature extraction method and the MCNN model classifying tweets into three sentiment classes (positive, neutral and negative) on NepCOV19Tweets dataset, which is the only public COVID-19 tweets dataset in Nepali language. The evaluation results show that the proposed hybrid features outperform individual feature extraction methods with the highest classification accuracy of 69.7% and the MCNN model outperforms the existing methods with the highest classification accuracy of 71.3% during classification.Comment: This paper is under consideration in Journal of Ambient Intelligence and Humanized Computing (Springer) journal. This version may be deleted or updated at any time depending on the journal's policy upon acceptanc

    NDVI Threshold-Based Urban Green Space Mapping from Sentinel-2A at the Local Governmental Area (LGA) Level of Victoria, Australia

    No full text
    Obtaining accurate, precise and timely spatial information on the distribution and dynamics of urban green space is crucial in understanding livability of the cities and urban dwellers. Inspired from the importance of spatial information in planning urban lives, and availability of state-of-the-art remote sensing data and technologies in open access forms, in this work, we develop a simple three-level hierarchical mapping of urban green space with multiple usability to various stakeholders. We utilize the established Normalized Difference Vegetation Index (NDVI) threshold on Sentinel-2A Earth Observation image data to classify the urban vegetation of each Victorian Local Government Area (LGA). Firstly, we categorize each LGA region into two broad classes as vegetation and non-vegetation; secondly, we further categorize the vegetation regions of each LGA into two sub-classes as shrub (including grassland) and trees; thirdly, for both shrub and trees classes, we further classify them as stressed and healthy. We not only map the urban vegetation in hierarchy but also develop Urban Green Space Index (UGSI) and Per Capita Green Space (PCGS) for the Victorian Local Government Areas (LGAs) to provide insights on the association of demography with urban green infrastructure using urban spatial analytics. To show the efficacy of the applied method, we evaluate our results using a Google Earth Engine (GEE) platform across different NDVI threshold ranges. The evaluation result shows that our method produces excellent performance metrics such as mean precision, recall, f-score and accuracy. In addition to this, we also prepare a recent Sentinel-2A dataset and derived products of urban green space coverage of the Victorian LGAs that are useful for multiple stakeholders ranging from bushfire modellers to biodiversity conservationists in contributing to sustainable and resilient urban lives

    Land use and land cover (LULC) performance modeling using machine learning algorithms: a case study of the city of Melbourne, Australia

    No full text
    Abstract Accurate spatial information on Land use and land cover (LULC) plays a crucial role in city planning. A widely used method of obtaining accurate LULC maps is a classification of the categories, which is one of the challenging problems. Attempts have been made considering spectral (Sp), statistical (St), and index-based (Ind) features in developing LULC maps for city planning. However, no work has been reported to automate LULC performance modeling for their robustness with machine learning (ML) algorithms. In this paper, we design seven schemes and automate the LULC performance modeling with six ML algorithms-Random Forest, Support Vector Machine with Linear kernel, Support Vector Machine with Radial basis function kernel, Artificial Neural Network, Naïve Bayes, and Generalised Linear Model for the city of Melbourne, Australia on Sentinel-2A images. Experimental results show that the Random Forest outperforms remaining ML algorithms in the classification accuracy (0.99) on all schemes. The robustness and statistical analysis of the ML algorithms (for example, Random Forest imparts over 0.99 F1-score for all five categories and p value  ≤\le ≤  0.05 from Wilcoxon ranked test over accuracy measures) against varying training splits demonstrate the effectiveness of the proposed schemes. Thus, providing a robust measure of LULC maps in city planning

    Recent Advances in Scene Image Representation and Classification

    Full text link
    With the rise of deep learning algorithms nowadays, scene image representation methods on big data (e.g., SUN-397) have achieved a significant performance boost in classification. However, the performance is still limited because the scene images are mostly complex in nature having higher intra-class dissimilarity and inter-class similarity problems. To deal with such problems, there are several methods proposed in the literature with their own advantages and limitations. A detailed study of previous works is necessary to understand their pros and cons in image representation and classification. In this paper, we review the existing scene image representation methods that are being used widely for image classification. For this, we, first, devise the taxonomy using the seminal existing methods proposed in the literature to this date. Next, we compare their performance both qualitatively (e.g., quality of outputs, pros/cons, etc.) and quantitatively (e.g., accuracy). Last, we speculate the prominent research directions in scene image representation tasks. Overall, this survey provides in-depth insights and applications of recent scene image representation methods for traditional Computer Vision (CV)-based methods, Deep Learning (DL)-based methods, and Search Engine (SE)-based methods.Comment: This paper is under review in Computer Science Review (Elsevier) journal. This article may be deleted or updated based on the polices of the journa
    corecore